Stream Restoration Projects Update

April 27, 2021 City Council Legislative Work Session

Overview

1. Background | Approach | City Projects and Themes

2. Alternatives Discussion

3. Potential Options

Background | Approach | City Projects | Main Themes

Why do Stream Restorations?

- Identified our urban streams that need stewardship
- Address public infrastructure issues
- Science-based approach
- Protect and improve local waterways

CITY 💓 ALEXANDRIA

- Do all this **WHILE** addressing Chesapeake Bay mandates
- Consistent with City goals and approved plans

Earlier Stream Assessments to Guide Watershed Management Strategies

- Phase II Stream Assessment (Completed 2008) Baseline for overall conditions
 - Bank Stability
 - Habitat Conditions
 - Erosion: scouring and downcutting
 - Buffer density

ALEXANDRIA

- Infrastructure Assessment
- Future work needed to develop management options

Phase III Stream Assessment (2019): Prioritized Streams for Restoration Efforts

- Prioritized streams identified earlier
- Identified and quantified erosion rates and infrastructure issues
- Start to develop management strategies
- Co-benefits: fix earlier identified issues for long-term stream health
 - Address local water quality & Bay TMDL
 - Create Bank stability
 - Reduce ongoing erosion
 - Restore buffer
 - Protection of public infrastructure

Chesapeake Bay Total Maximum Daily Load (TMDL)

- Nitrogen, phosphorus, sediment 'clean up mandates'
- Conservative approach; regulatory changes
- "All the Above" toolbox approach
 - Pond Retrofits
 - BMPs in Right-of-Way / City property
 - Public Private Partnerships
 - Stream Restoration
 - Tree Planting
 - CSO Reduction Credits (Bi-Lateral Trading)

Pollutant	100% Total Reductions (lbs./yr.)	To Date Achieved (Ibs./yr.)	Still Need (lbs./yr.)
Nitrogen	7,597	5,223	2,374
Phosphorus	1,005	717	288
Sediment	861,937	581,058	280,879

Examples from other jurisdictions

8

Natural Channel Restoration: Widely Studied, Scientifically Accepted & Broadly Applied

- VA alone: 111 stream restoration projects awarded a total \$61M
 - Virginia Department of Environmental Quality (VDEQ) Stormwater Local Assistance Fund (SLAF) grants since FY2014
- EPA estimates > 441 Bay stream miles restored by 2025
- Harrisonburg City of Hopewell District of Countv Roanóke County Columbia City of Hampton
 Albermarle Anne Arundel List goes on... County Montgomery Countv Town of Countv Christiansburg VDO City of Roanoke MDHSA Town of Dumfries Howard County Prince William Henrico County County City of City of Rockville Charlottesville James City City of ALEXANDRIA ECO-CITY

Snakeden Branch -Reston (Fairfax County)

Courtesy of Wetland Studies and Solutions

Pope Branch – District of Columbia

Courtesy of District Department of Energy and Environment

Planned City Stream Restoration Efforts

Lucky Run Stream Restoration

- Braddock Rd to Park Center Pond (City maintenance)
- ~950 linear feet
- \$1.3M with \$700,000 SLAF grant (FY2017)
- Proposed Construction: Winter 2021 to 2022

ECO-CITY 💓 ALEXANDRIA

Lucky Run Project Goals

- Erosion: stabilize and stop accelerated erosion and reduce export of sediment and nutrients
- Protect Infrastructure: stabilize sanitary sewer and path
- Reduce sediment entering pond and perform Pond maintenance
- Habitat creation
- Buffer restoration
- Reduce pollutants (nitrogen, phosphorus, and sediment)

14

Strawberry Run Stream Restoration

- Ft. Williams Pkwy at Dearborn to Pedestrian bridge from Taft Avenue
- About 900 feet in length
- \$800,000 SLAF Grant (FY2019)
- Proposed Construction: Summer 2022 to 2023

ECO-CITY FALEXANDRIA

Strawberry Run Project Goals and Benefits

- Erosion: stabilize stream banks and restore healthy stream characteristics
- Infrastructure: protect and stabilize storm sewers, private property, safety
- Habitat creation
- Buffer restoration
- Reduce pollution: nitrogen, phosphorous, and sediment

March 16, 2018 Source: Wood Environmental

Downstream Prior Restoration

ECO-CITY ALEXANDRIA

January 20, 2021 Source: Wood Environmental

- Developer funded management strategy
- Taft Avenue subdivision; nexus for the restoration
- Earlier natural channel design
- Full natural channel design principles and practices not applied
- Designed to 2-yr storm and not the 100-yr like the upstream
- Large storms, 14-18 months have impacted downstream portion

Main Themes – Strawberry Run*

Theme	Response
Process Concerns	 Outreach; onsite, associations, public, but earlier outreach would have been better Plans have progressively become more specific over time
BANCS Assessment checklists not provided	 Assessment "checklist" not a formal submission; assessment is the entire Phase III Stream Assessment, as provided
Prior downstream restoration has failed and so will the proposed; provide plans	 Target of opportunity - developer funded management strategy Early natural channel design effort constructed by adjacent developer Points of failure in the downstream restoration In hindsight, the upstream portion should have been completed first Previous "restoration" plans and the current plans on the website

*See attached Companion

Taylor Run Stream Restoration

- Chinquapin Rec Center Outfall to Church culvert
- About 1,900 feet in length
- \$4.5M with \$2.255M SLAF Grant (FY2019)
- Proposed Construction: Summer 2022 to 2023

ALEXANDRIA

CITY

Changes to Taylor Run Over Time

Infrastructure, **Erosion**, Buffer

Taylor Run Existing Conditions: Erosion, Infrastructure, and Buffers

Taylor Run Project Goals and Benefits

- Erosion: limit ongoing erosion, widening, and downcutting
- Protect Infrastructure: stabilize the sanitary sewer
- Buffer: prevent loss of trees due to eroding banks, and create a dense riparian buffer with native vegetation
- Safety: fix trail erosion and install railing
- Reduce pollutants (nitrogen, phosphorus, and sediment) generated from accelerated stream bank and bed erosion

CITY 💓 ALEXANDRIA

Existing Conditions

Rendering: Proposed Conditions

Forested Area and Limits of Disturbance

		Total Trees in Forested Area	1,300
	~20' on either	Total Trees Surveyed: Limits of Tree Survey	750
	side of stream	Total To Be Impacted: Within Limits of Disturbance	261
- Ele		Dead Trees Impacted: Within Limits of Disturbance	61
		Taylor	RIID

LEGEND Magenta – Limits of Disturbance Blue – Stream Centerline Brown with circles – Sanitary Sewer

X 1-11 - 210-1 K

3100 KING STREET

Main Themes – Taylor Run*

Theme	Response
Don't Bulldoze this Natural Forested Park	 Forest will not be bulldozed The forest and the stream has been impacted over time Chinquapin and Forest Park areas about 31.6 acres with under 2 acres disturbed within city property
Acidic Seepage Wetland (Swamp) will be destroyed	 Wetland is outside of the project area; moved access farther away Raising the bed will bring it close to the historical elevation
Alternative upland BMPs or Tree Planting alternatives	 No viable alternatives presented that address the project goals Channelized, eroding stream is the pollution source
Not designed for big storms	 Design ensures the stream can withstand large storm events; the 100-yr for stability

*See attached Companion

Recent Community-Proposed Alternatives Discussion

1. Build Lucky Run & Plant \$2 million of Trees Instead of Doing Taylor/Strawberry

- $2M \rightarrow 3,636$ trees $\rightarrow 16.6$ lbs./yr. Total Phosphorus*
- Urban Tree Canopy Expansion Expert Panel (December 2016)
 - Modeled approach based on simulated land use changes (turf to forest)
 - Planting area of at least 1/4 acre and minimum 50 ft width (871' x 50' min.)
 - Recent VDEQ Action Plan Guidance includes this BMP (February 2021)
- Significant challenge finding dedicated space for planting density & credit number is aggressive
- If tree planting is feasible, City would still be short on nitrogen. Options:
 - Purchase credits: \$640,000
 - BMPs: \$3M to \$7M total (includes tree credit)
- Does not address the goals of the stream restoration projects / co-benefits
 - Sewer line protection work would still need to be done

*Assumes \$550 per tree

2. Build Lucky Run & Rely on Upstream Improvements Instead of Taylor/Strawberry

- Retrofits of BMPs in the Right-of-Way and public property
- ~45 new BMPs
 - \$4M to \$10M total: Increase SWU fee (?) or re-program funds
- Purchase credits: \$840,000
- Siting and feasibility risks. Resource (staff) intensive.
- Does not address the goals of the stream restoration projects / co-benefits
 - Sewer line protection work would still need to be done

3. Build Lucky Run & Rely on CSO Credits Instead of Taylor/Strawberry

- Identified early as City strategy in Chesapeake Bay TMDL Action Plan
 - Plan took conservative ("everything but the kitchen sink" approach) and includes buffer to overachieve mandated goals
- City and AlexRenew agree: CSO credits will contribute to the City's goal
- Credits will be calculated annually and may fluctuate
- Credits for total nitrogen may need to be purchased at ~\$1 million or achieved through BMPs for \$3 to \$10 million
- Does not address the goals of the stream restoration projects / co-benefits
 - Sewer line protection work would still need to be done

4. Use Fields' Design in Taylor Run (Large Woody Debris Instead of Restoration)

- City considered wood-based design initially but discarded due to its limited longevity and protection for stream
- City design (natural channel) more fully addresses system-wide instability & solution more permanent
- Better integrates and protects the existing sanitary line
- Similar effect on floodplain hydrology
- Significant number of tree impacts: ~150 trees
- Bay credit generation as co-benefit? Still unknown... but significant uncertainty

Potential Options* and Fiscal Impact

B) PROCEED USING UPDATED CREDITING PROTOCOL C) PAUSE TO EVALUATE FURTHER

D) STOP USING STREAM RESTORATION

*Options A through C assume Lucky Run proceeds as planned

Option A PROCEED WITH CURRENT PLAN*

Advantage	Disadvantage	Fiscal Impact	
Complete final design	No further input on design	 No additional fiscal impact beyond 	
Receive allowable credits	Concerns about pollution credits remain	appropriated funds	
Reduce risk to SLAF grant			
Advances MS4 permit compliance			
No increase to project cost			

Option B PROCEED USING UPDATED CREDITING PROTOCOL*

Advantage	Disadvantage	Fiscal Impact	
Address concern on pollutant crediting	Risk change (increase or decrease) of credits	 Sampling and analysis Potential credit decrease means 	
Designs can proceed (pending final check-in with Council)	Additional work and cost	additional BMPs (also potential to stay same or increase)	

Option C PAUSE TO EVALUATE FURTHER USING UPDATED PROTOCOL*

Advantage	Disadvantage	Fiscal Impact	
Increase understanding	Potential loss of SLAF grant	 Loss of \$2.225M SLAF (Taylor) and \$0.800M (Strawberry) Sampling and analysis Potential credit decrease means additional BMPs 	
Use of new crediting protocol	Potential change in credit calculation approach		
	Redesign due to continued change in stream conditions		
	Increase project cost & need for focused staff (flooding priority)	 (potential to stay same) Additional design (unknown) Project cost inflation 	
	Increase interim risk of impact to sanitary sewer		
	Increase SWU Fee?		

ALEXANDRIA

ECO-CITY

Option D STOP USING STREAM RESTORATION?

Advantage	Disadvantage	Fiscal Impact	
Reduce concern with projects	Loss of all current SLAF grants	 Loss of \$2.225M SLAF (Taylor), \$0.800M 	
	Increase SWU Fee?	(Strawberry) and \$0.669M (Lucky)	
	Potential future SLAF ineligibility?	 ~\$500,000 sewer stabilization 	
	Sanitary sewer stabilization using 'grey' techniques	Purchase credits: \$2.5MBMPs: \$11M to \$28M	
	Future increased focus on water quality in CIP?		

Thank you! Questions?

CONCLUSION

- Impacts to city's streams identified ~15 years ago & still need stewardship today
- Natural channel design is widely-used, scientifically supported approach that provides comprehensive protection and restoration
- Options exist to meet Bay credit goals, some risk on credit calculations when reliance on CSO credits becomes primary strategy
- Stream restoration in City toolbox & Environmental Action Plan because the projects are needed, and co-benefits are significant
- Stream restoration with SLAF grants remains the most cost-effective strategy to meet overarching City goals

